Wednesday 17 November 2010

Chemical Process Equipment (Stanley M. Walas)

Preface : This book is intended as a guide to the selection or design of the principal kinds of chemical process equipment by engineers in school and industry. The level of treatment assumes an elementary knowledge of unit operations and transport phenomena. Access to the many design and reference books listed in Chapter 1 is desirable. For coherence, brief reviews of pertinent theory are provided. Emphasis is placed on shortcuts, rules of thumb, and data for design by analogy:, often as primary design processes but also for quick evaluations of detailed work. All answers to process design questions cannot be put into a book. Even at this late date in the development of the chemical industry, it is common to hear authorities on most kinds of equipment say that their equipment can be properly fitted to a particular task only on the basis of some direct laboratory and pilot plant work. Nevertheless, much guidance and reassurance are obtainable from general experience and specific examples of successful applications, which this book attempts to provide. Much of the informaticin is supplied in numerous tables and figures, which often deserve careful study quite apart from the text. The general background of process design, flowsheets, and process control is reviewed in the introductory chapters. The major kinds of operations and equipment are treated in individual chapters. Information about peripheral and less widely employed equipment in chemical plants is concentrated in Chapter 19 with references to key works of as much practical value as possible. 
Because decisions often must be based on economic grounds, Chapter 20, on costs of equipment, rounds out the book. Appendixes provide examples of equipment rating forms and manufacturers’ questionnaires. Chemical process equipment is of two kinds: custom designed and built, or proprietary “off the shelf.” For example, the sizes and performance of custom equipment such as distillation towers, drums, and heat exchangers are derived by the process engineer on the basis of established principles and data, although some mechanical details remain in accordance with safe practice codes and individual fabrication practices.

Download Link : "click here to download"

No comments:

Post a Comment